

10

12

13

14

15

16

17

18

19

20

21

22

2324

25

26

27

28

29

30

31

- New eastern China agricultural burning fire emission inventory
- and trends analysis from combined geostationary (Himawari-8)
- and polar-orbiting (VIIRS-IM) fire radiative power products
- 5 Tianran Zhang^{1, 2}, Mark C. de Jong^{1, 2}, Martin J. Wooster^{1, 2}, Weidong Xu^{1, 2}, Lili Wang³
- 6 King's College London, Department of Geography, Strand, London WC2R 2LS.
- 7 Per New National Centre for Earth Observation (NCEO)
- 8 ³ LAPC, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, PR China
- 9 Correspondence to: Tianran Zhang (tianran.zhang@kcl.ac.uk)

11 Abstract

Open burning of agricultural crop residues is widespread across eastern China, and during certain post-harvest periods this activity is believed to significantly influence air quality. However, the exact contribution of crop residue burning to major air quality exceedances and air quality episodes has proven difficult to quantify. Whilst highly successful in many regions, in areas dominated by agricultural burning MODIS-based fire emissions inventories such as GFAS and GFED are suspected of significantly underestimating the magnitude of biomass burning emissions due to the typically very small, but highly numerous, fires involved that are quite easily missed by coarser spatial resolution remote sensing observations. To address this issue, we here use twice daily fire radiative power (FRP) observations from the 'small fire optimised' VIIRS-IM FRP product, and combine it with fire diurnal cycle information taken from the geostationary Himawari-8 satellite. Using this we generate a unique high spatio-temporal resolution agricultural burning inventory for eastern China for the years 2012-2015, designed to fully take into account small fires well below the MODIS burned area or active fire detection limit, focusing on dry matter burned (DMB) and emissions of CO₂, CO, PM_{2.5} and black carbon. We calculate DMB totals 100 to 400% higher than reported by GFAS and GFED4.1s, and quantify interesting spatial and temporal patterns previously un-noted. Wheat residue burning, primarily occurring in May-June, is responsible for more than half of the annual crop residue burning emissions of all species, whilst a secondary peak in autumn (Sept-Oct) is associated with rice and corn residue burning. We further identify a new winter (Nov-Dec) burning season, hypothesised to be caused by delays in burning driven by the stronger implementation of residue burning bans during the autumn post-harvest season. Whilst our emissions estimates are far higher than those of other satellite-based emissions inventories for the region, they are lower than estimates made using traditional 'crop yield-based approaches' (CYBA) by a factor of between 2 and 5x. We believe that this is at least in part caused by outdated and overly high burning ratios being used in the CYBA approach, leading to the

- 32 overestimation of DMB. Therefore we conclude that that satellite remote sensing approaches which adequately detect
- 33 the presence of agricultural fires are a far better approach to agricultural fire emission estimation.

35 Keywords: Agriculture, Biomass Burning, Active Fire, VIIRS, Air Quality, Fire Emission

36

37

34

1. INTRODUCTION

- 38 Eastern China (111 123 °E, 27 40 °N) is home to around one third of the Chinese population and includes the area
- 39 of the North China Plain and the Yangtze Plain two of the largest agricultural zones in China (Fig. 1). Cropland
- 40 covers over 1.7 million km² of eastern China, and the region is responsible for an estimated 25% of China's crop
- 41 production, including around 51% of the national rice yield (NBSC, 2012). Large amounts of crop residue (~ 60
- 42 Tg/year including stems, stalks, straw etc) results from this agricultural production (Chen et al., 2017; Huang et al.,
- 43 2012; Zhang et al., 2015), and the burning of this waste in open fields is widespread across much of eastern China
- 44 (Fig. 2).
- 45 This biomass burning has both local and regional scale air quality impacts, with emissions of particulate matter (PM)
- 46 of particular concern (Bond et al., 2013). The East Asian monsoon system that influences much of mainland China
- 47 results in prevailing north-westerly to south-easterly atmospheric transport during winter, which is reversed in the
- 48 summer months. Under these influences, the smoke from agricultural residue fires in Eastern China often affects
- 49 "mega-cities" like Beijing and Shanghai (Chan & Yao, 2008; Cheng et al., 2013; Du et al., 2011; Li et al., 2010).
- 50 Modelling studies show that these agricultural emissions can drive intense regional air pollution episodes; Huang et
- 51 al. (2012) suggest that PM₁₀ concentrations in some cities could reach 600 μg m⁻³ during such episodes, a level 6×
- 52 higher than the WHO 24h-mean PM_{10} air quality guideline for human health (WHO, 2005).
- 53 Agricultural burning in eastern China accounts for a significant part of China's total biomass burning emissions
- 54 (Streets et al., 2003; Chen et al., 2017), however the specific contribution of crop residue burning to air quality
- 55 exceedances in China remains uncertain, partly because there is considerable doubt as to the amount of dry matter
- 56 burned (DMB) in crop residue fires. For example, his leads to a ~450 % range in total crop residue burning black
- 57 carbon emissions in Asia between different emissions inventories (Streets et al., 2003), while emissions estimates of
- 58 gaseous species are similarly varied.
- 59 A major source of this uncertainty stems from the hitherto relatively poor ability of earth observation (EO) satellite
- 60 instruments to adequately detect biomass burning activity in many agricultural areas due to the small size of the fires
- 61 usually found in these areas. Many agricultural fields in eastern China are typically only around 700 m² in area (NBSC,
- 62 2012), and fires ignited to burn across the stubble left in the place after harvest are therefore hard to detect with
- moderate spatial resolution burned area (BA) mapping from sensors such as MODIS, and are made even more elusive
- by the common farming practice of pilling up residues into an even smaller area before igniting them (Zhang et al.,
- 65 2017; 2018). As mostly BA mapping methods require ~> 20 % of a pixel to be burned in order for it to be classified

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

as 'fire affected' (Giglio et al., 2006; 2009), BA-based emissions inventories such as GFED tend to significantly underestimate fire activity in areas such as eastern China (Zhang et al., 2018).

Infrared based Active fire (AF) based detection techniques can discriminate fires covering only 0.01-0.1 % of a pixel area (Wooster et al., 2005; Schroeder et al., 2014), and as such should in theory be able to capture far more fire activity in agricultural areas than BA based methods. Nevertheless, due to the extremely small size of agricultural fires in eastern China, a large proportion of fire activity remains undetected by AF detection algorithms applied to 'moderate' spatial resolution imagery (from sensors such as MODIS). This limitation is a key source of uncertainty within the FRP approach, and indeed in fact can lead to biased (underestimated) FRP totals caused by the non-detection of the lower FRP component of a regions fire regime (e.g. Roberts et al., 2015). Higher spatial resolution polar-orbiting sensors such as VIIRS can provide the ability to identify an increased number of AFs having lower FRP values, particularly when used with algorithms optimised for small fire detection (Zhang et al., 2017) (Fig. 2), but they still only capture fires burning in clear skies at the time of the satellite overpass (Giglio et al., 2003; 2006). This limitation is also a considerable source of uncertainty, and a hinderance given the sometimes short duration of active burning (especially of agricultural fires) and the typical polar orbiting imaging frequency of only a few times per day. To cope with this issue, FRP-based emissions inventories such as GFAS based upon AF methods are generally required to make assumptions or exploit additional data on the timing and relative diurnal variability of fire activity occurring between polar orbiting overpasses in order to estimate, for example, total daily Fire Radiative Energy (FRE) (Kaiser et al., 2012; Xu et al., 2017; Zhang et al., 2017). Here we provide this additional information by exploiting new fire diurnal cycle information taken from the geostationary satellite Himawari-8, combining it with twice daily FRP information provided by the 'small fire optimised' VIIRS-IM product of Zhang et al. (2017) to produce a unique high spatio-temporal resolution agricultural fire dataset (referred to hereafter as the VIIRS-IM/Him dataset) for eastern China based on FRE totals. This new inventory is designed to reduce bias and uncertainty caused by use of one FRP data type alone, and to account for small fires burning even for short periods and often well below the MODIS AF and BA detection limit. The fuel for these fires is waste straw and other agricultural residues, and we use a crop rotation map to classify the type of agricultural residue being burned at each observed location and time. It is then used to select the most appropriate smoke emissions factor for calculating the final fire emissions totals from FRE derived estimates of dry matter burned (DMB).

95

98

99

100

103

104

105

106

107

108

109

110111

112

114

115

118

121

122

2. DATASETS

2.1 Polar Orbiting VIIRS-IM FRP Product

96 The Visible Infrared Imaging Radiometer Suite (VIIRS) instrument is currently flown aboard the polar orbiting Suomi

97 NPP (since 2011) and NOAA-20 (since 2017) satellites and expands upon the capabilities of the AVHRR and MODIS

instruments for environmental monitoring (Zhou et al., 2019). VIIRS has 22 channels spanning the visible to the

longwave infrared, a 3000 km swath width, and nadir pixel resolution ranging between 375 m and 750 m (Goldberg

et al., 2013). Furthermore, a 'pixel aggregation' scheme is applied to VIIRS which limits pixel area increase with scan

angle to a maximum of 4× compared to MODIS' 10× (Wolfe et al., 2013).

With a necessary emphasis on the detection of small fires typical of agricultural regions, our work focuses on

generating a gridded daily biomass burning fuel consumption product that estimates DMB and emissions from the

VIIRS-IM AF Detection and FRP product developed and optimised for eastern China by Zhang et al. (2017), using

data from the instrument aboard the Suomi NPP satellite with a mean local daytime overpass time of 13:30 in the

ascending node, and a mean local nighttime overpass time of 01:30 in the descending node (Wolfe et al., 2013). Fig.

2 shows an example of the VIIRS-IM FRP product, generated from the two observations per day provided by Suomi NPP VIIRS. This FRP product blends the advantages of the 'small fire' sensitivity of the VIIRS 375 m I-Band, with

the ability to retrieve fire radiative power (FRP) over larger fires using the 750 m M-Band observations. Due to the

very small size of agricultural fires in China, and because the VIIRS I-Band pixel area is 10× smaller than the pixel

area of MODIS, far more fires can be detected in eastern china using the VIIRS-IM AF product of Zhang et al. (2017)

than can be identified in near simultaneous MODIS data, and on average across eastern China retrieves FRP totals

around 4× higher (Zhang et al., 2017).

2.2 Geostationary Himawari FRP Product

To convert the twice-daily VIIRS-IM FRP product to daily-integrated FRE, information on the fire diurnal cycle is

117 required (Ellicott et al., 2009; Freeborn et al., 2008; Roberts et al., 2009). We obtained this from 10-min temporal

resolution observations from the geostationary Himawari-8 satellite, whose data have recently been used to derive AF

detections and FRP metrics across Asia by Xu et al. (2017). Himawari cannot be used in isolation to directly estimate

daily FRE for each of the 4-years of the study, because (i) Himawari data are only available from early 2015 onwards,

and (ii) Himawari's relatively coarse pixel size (2 km at the sub-satellite point) means that it omits even more of the

agricultural fires than does MODIS (as illustrated by Xu et al., 2017 and in Fig.3). However, where agricultural fires

123 are concentrated in sufficient density, observations by Himawari do enable their detection and these data can be used

124 to map the changing FRP of these fires over the day for derivation of the fire diurnal cycle.

125126

2.3 Crop Rotation Map

https://doi.org/10.5194/acp-2019-968 Preprint. Discussion started: 31 January 2020 © Author(s) 2020. CC BY 4.0 License.

127 The predominant agricultural residues burned across eastern China are wheat, corn and rice straw (Huang et al., 2012).

128 To classify the likely residue type of each detected fire, a crop rotation map (Fig. S1) was generated from the

MIRCA2000 0.08° global monthly crop area dataset (Portmann et al., 2010), which has a spatial resolution equivalent

to $9.2 \text{ km} \times 9.2 \text{ km}$ at the equator. These data were used to assign fire activity to a particular crop residue type, which

determined the appropriate agricultural biomass burning emission factors to apply (see Section 3.3).

132

133

136

137

129

130

131

2.4 Land Cover Data

134 We use the GlobeLand30 land cover product (Chen et al, 2015) to classify land cover/use for our study area in Eastern

135 China. GlobeLand30 provides 30m spatial resolution land cover data for a baseline year of 2010 derived primarily

from Landsat (TM5 & ETM +) and China Environmental Disaster Alleviation Satellite (HJ-1) imagers. Fig. 1 shows

the spatial distribution of the agricultural land ratio (regridded to 0.01 degree spatial resolution) calculated use this

138 dataset in eastern China.

139

140

144

150

2.5 GFED & GFAS Emissions Inventory Data

141 The results from the combined VIIRS-IM and Himawari FRP based emissions (VIIRS-IM/Him) dataset were 142 compared to two state-of-the-art global fire emission databases, the Global Fire Emissions Database (GFED) and the 143

Global Fire Assimilation System (GFAS). GFED was built to combine remotely sensed data on BA with fuel loads

from the CASA biogeochemical model of vegetation growth, producing monthly, spatially explicit pyrogenic fuel

145 consumption, carbon, GHG and air pollution emission estimates at 0.25° grid cell resolution globally (Van der Werf 146 et al., 2010; Giglio et al., 2013). The most recent version (GFED4.1s) includes a "small fire boost" based on AF

147

detections, in an attempt to counteract the inability of the MODIS BA product to detect many agricultural fires

(Randerson et al., 2012; Van der Werf et al., 2017). Due to this 'boost' GFED4.1s shows higher values of dry matter 148 149 burned (DMB) in most eastern China grid cells compared to the 'unboosted' GFED4, and a more extensive fire

distribution. However, Zhang et al. (2018) show that the boosting procedure can introduce significant anomalies into

151 the GFED dataset at certain times of year, generated when MODIS' AF detection procedure incorrectly identifies 152 urban features in eastern China as fires.

153 In contrast to GFED, the GFAS fire emissions database is based on AF detections and is integrated into Copernicus

154 Atmosphere Monitoring Service (CAMS) system for near-real-time atmospheric composition monitoring and

forecasting. Developed by Kaiser et al. (2012) and based on the FRP method, MODIS supplies the FRP data for the

current GFAS v1.2 up to 4 times per day at most latitudes. From these observations, DMB is calculated via a regression

157 against GFED DMB values (Kaiser et al., 2012) and daily emissions of 40 emitted species are then calculated at 0.1°

158 spatial resolution.

159

155

- 160 2.6 Crop Yield Based Approach Emissions Inventory Data
- 161 The traditional method for estimation of agricultural fire emissions is the so-called crop yield based approach (CYBA),
- 162 and we compare data from such approaches to our new VIIRS-IM/Him methodology. CYBAs typically calculate the
- 163 amount of crop residue burned in a region using a combination of crop production statistics and related additional
- parameters using following equation:

$$165 DMB = \sum_{i=1}^{n} P_i R_i B_i C (1)$$

- Where i stands for each of n different crops; DMB is total dry matter burned (kg) in the region; P_i is the regional
- 167 production of crop i (kg), and is usually derived from annual agricultural statics reports; R_i is the dry matter production-
- to-residue ratio (unitless), which depends on the crop type i; B_i is the proportion of residue burned in the field for crop
- type i in the region under study (i.e. the 'burning ratio'; 0-1, unitless); and C is crop combustion completeness (0-1,
- 170 unitless, Huang et al., 2012). DMB is then multiplied by appropriate particulate/gaseous emission factors in order to
- estimate the total emissions from agricultural burning.
- 172 Certain of the parameters of Eqn. 1 are not so easily determined. For example, the burning ratio (B_i) is often based on
- 173 questionnaires or investigations on the use of crop residues conducted with farmers (Gao et al., 2002; Wang and Zhang,
- 174 2008). Because of strong variations in socio-economic development across the huge expanse of mainland China, large
- differences in the estimates of B_i exist (Jiang et al., 2012; Liu et al., 2008; Yamaji et al., 2010). B_i may also change
- 176 considerably from year to year since it is strongly impacted by the level of local economic development, the
- 177 availability of alternative uses for crop residues in the region, and the regional governance of fire prohibition (Chen
- 178 et al., 2017). Moreover, considering the official prohibition of open air burning, the reliability of data based on surveys
- 179 that ask farmer how much residue they burn is questionable. Despite this, most studies that include estimation of
- 180 agricultural fire emissions in Eastern China have relied on the CYBA (e.g. Cao et al., 2006; He et al., 2011; Huang et
- 181 al., 2012; Li et al., 2009; Qin and Xie, 2011; Yan et al., 2006; Zhao et al., 2015).

3. METHODOLOGY

182

- 184 3.1 Data Gridding and Cloud Cover Adjustment
- 185 The VIIRS-IM FRP product data (in MW), originally derived at the pixel scale, were aggregated to 0.1° resolution for
- this analysis. Unlike the daily average MODIS FRP calculation of GFAS, which weights individually contributing
- 187 MODIS FRP observations by their view zenith angle to downgrade the importance of far off-nadir measurements
- 188 (Kaiser et al., 2012), no such weighting was applied to the VIIRS-IM FRP data since they have already shown very
- 189 limited view zenith angle dependence as a result of the VIIRS' pixel-averaging procedure (Zhang et al., 2017). For
- 190 each VIIRS overpass, the total observed FRP present in each 0.1° grid cell j (i.e. FRP_i) was calculated from the
- cumulative FRP of all native resolution AF pixels *i* within the grid cell:

$$192 FRP_i = \sum_{i \in i} FRP_i (2)$$

219

- Total observed agricultural area (A, excluding cloud covered area) within each 0.1° grid cell was calculated similarly
- using the GlobeLand30 30m landcover map:

$$195 A_i = \sum_{i \in i} A_i (3)$$

- 196 The VIIRS-IM product is only affected to a limited degree by smoke because of the relative transparency of smoke
- 197 plumes at Mid-Wave Infrared (MWIR) wavelengths due to the dominant particle size being smaller than the
- 198 wavelengths of the VIIRS MWIR channel (Zhang et al., 2017). However, the product cannot provide information in
- 199 cloud covered areas, and so an adjustment is required to take into account actively burning fires hidden from view by
- 200 clouds. Following Streets et al. (2003) we assume that for partially cloud covered grid cells, the AF and FRP
- distribution under cloud is the same as under the clear sky areas, as is also assumed in GFAS (Kaiser et al., 2012).
- Subsequently, the gridded and cloud-adjusted FRP areal density (ρ_i , MW.km⁻²) is calculated using:

$$203 \rho_j = \frac{FRP_j}{A_j} (4)$$

- 205 3.2 Diurnal Cycle and Daily FRE Generation
- Hourly averages of the 10-minute FRP data from the Himawari-8 FRP product of Xu et al. (2017) were gridded to the
- 207 same 0.1° grid cell resolution as the VIIRS-IM dataset. For each grid cell and calendar day, hourly FRP data were
- 208 normalised in order to minimise the impact of day-to-day variations in fire activity:

$$\widetilde{FRP_{j,d}^h} = \frac{FRP_{j,d}^h - \min(FRP_{j,d})}{\max(FRP_{j,d}) - \min(FRP_{j,d})}$$
(5)

- Where $\widetilde{FRP}_{J,d}^h$ is the normalised Himawari-8 FRP for hour h on day d for grid cell j; $FRP_{J,d}^h$ is the observed Himawari-
- 8 FRP (MW) for hour h on day d for grid cell j; $\max(FRP_{j,d})$ and $\min(FRP_{j,d})$ are respectively the maximum and
- 212 minimum hourly Himawari-8 FRP (MW) observed on day d for grid cell j. Note that h is in local time (UTC/GMT +
- 8 hours) and the diurnal cycle runs from 0 to 23 hours.
- $\widetilde{FRP_{l,d}^h}$ data for 2015 were used to produce two normalised 'seasonal' diurnal fire cycles for the eastern China study
- area: a 'summer' diurnal cycle, constructed from May-June data, and an 'autumn' diurnal cycle, constructed from
- 216 Sept-Oct data. Both normalised seasonal diurnal cycles were calculated using a weighted mean so that days and grid
- cells with high fire activity had the greatest influence on the cycle:

$$FRP^{h} = \frac{\sum_{d} \sum_{j} \left(\widetilde{FRP}_{j,d}^{h} \times FRP_{j,d}^{h} \right)}{\sum_{d} \sum_{i} \left(FRP_{j,d}^{h} \right)}$$
(7)

Where FRP^h is the normalised FRP for hour h for the entire study area and fire season (summer or autumn). Fig. 4

221 shows the resulting weighted mean fire diurnal cycle for the summer season for Eastern China. This diurnal cycle is

227228

230

232

236

239

240

244

246

222 bi-modal: a primary peak occurs around 13:00 local time that extends from around 08:00 to 18:00 (daytime) and a

223 second much smaller peak occurs around 21:00 local time (with a height of only ~ 20% of the normalised FRP value

of the first peak).

We blended information from the Himawari FRP diurnal cycle with the instantaneous twice-daily VIIRS-IM FRP

areal density $(\rho_j, MW.km^2)$ data, using an approach based on Andela et al. (2015) to create the VIIRS-IM/Him dataset.

Here we represent the diurnal fire cycle as a gaussian function parameterised using the Himawari FRP diurnal cycle,

superimposed on a fixed baseline. For a given grid cell j, at instantaneous time t, VIIRS-IM/Him FRP areal density is

229 calculated by:

$$\rho_{VIIRS-Him_{j,t}} = \rho_{VIIRS_{night,j}} + \mu \left(\rho_{VIIRS_{day,j}} - \rho_{VIIRS_{night,j}} \right) e^{-\frac{\left(t - t_{Himpeak}\right)^2}{2\sigma^2}}$$
(8)

Where $\rho_{VIIRS-Him_{j,t}}$ is the instantaneous VIIRS-IM/Him FRP areal density (MW.km⁻²) for grid cell j at time t;

 $\rho_{VIIRS_{night,j}}$ is the night-time (~01:00 LST) VIIRS-IM FRP areal density value (MW.km⁻²) for grid cell j; $\rho_{VIIRS_{dav,j}}$

is the day time (\sim 13:00 LST) VIIRS-IM FRP areal density value (MW.km⁻²) for grid cell j; μ is an adjustment factor

used to account for the difference between the VIIRS daytime overpass time and the peak time of the weighted mean

fire diurnal cycle (see below); $t_{Himpeak}$ is the time of day at which the seasonal Himawari FRP diurnal cycle peaks; σ is

238 the standard deviation of the main peak of the Himawari FRP diurnal cycle, calculated by fitting a gaussian function

(using non-linear least squares) to the seasonal Himawari FRP diurnal cycles. The summer diurnal cycle σ value

 (2.39 ± 0.053) was applied during the April-August period, and the autumn diurnal cycle σ value (1.63 ± 0.041) was

applied during the September-March period.

The adjustment factor μ is used to account for the fact that the VIIRS daytime overpass time is unlikely to coincide

with the peak of the fire diurnal cycle:

$$\mu = e^{\frac{\left(t_{VIIRS_{day,j}} - t_{Himpeak}\right)^2}{2\sigma^2}}$$
 (9)

Where $t_{VIIRS_{day,i}}$ is the local time of the VIIRS-IM FRP observation for grid cell j.

248 Daily FRE was then calculated for each grid cell j and calendar day by integrating the instantaneous VIIRS-IM/Him

FRP data using Eqn. 8.

251 3.3 Conversion to Dry Matter Burned (DMB) and Smoke Emissions 252 To convert the calculated FRE areal density to fuel consumption/DMB, we multiplied FRE by the 0.368 (± 0.015) kg.MJ⁻¹ factor derived by Wooster et al. (2005) from a series of outdoor experimental straw fires, that were very 253 254 similar to the Chinese agricultural residue fires used herein (Zhang et al., 2015). To convert the resultant DMB into 255 smoke emissions, we used the emission factors of wheat and rice derived from in situ measurements in agricultural 256 areas by Zhang et al. (2015) (Table 1). Corn residue was not a fuel type measured during those experiments, and so 257 for this fuel type (which was only 16-22% of the total agricultural fuel consumption) we used the emissions factors 258 for agricultural corn fires from Andreae and Merlet (2001), as is used in GFAS (Kaiser et al., 2012) (Table 1). Together 259 with the crop rotation map (see Section 2.3 and Fig. S1) the EFs from Table 1 enabled us to select the appropriate 260 emissions factor for use at a particular location and time of year. 261 Furthermore, a winter burning season was discovered during November and December (see details in Section 5.1) 262 when no cultivation crop is shown in the MIRCA2000 data in the study region. Analysis in this study shows that 263 winter fires are likely to result from the combustion of stored residues from the autumn harvest season, therefore all 264 fire activity in winter was assigned to crop types (and therefore emission factors) using the crop rotation map from the 265 previous closest month (October) (Fig. S1). This methodological change is accounted for in the data presented in Fig. 266 5. 267 4. BIOMASS BURNING AND EMISSIONS RESULTS 268 4.1 Temporal and Spatial Distribution of FRE In Eastern China 269

- 270 Fig. 5 shows the time series of daily mean FRE areal density in eastern China from February 2012 to December 2015,
- 271 reported at 0.1° grid cell resolution, and broken down into three main crop residue types. A strong seasonal variation
- 272 is seen, with peak activity in summer (May-June) associated with wheat residue burning and a smaller secondary peak
- 273 in activity occurring in autumn (Sept-Oct) associated with corn and rice residue burning. In fact, the secondary peak
- is a combination of several fluctuations lasting from October until December, further discussed in Section 5.1. Over
- the whole 4-year period, wheat crop residues contributed 65% of the total FRE, rice residues 18%, and corn residues
- 276 17%.
- 277 A distinct spatial pattern showing two main burning seasons can also been seen when FRE areal density is mapped
- 278 (Fig. 6). During the summer burning season (May-June), most fires are located between 32°N 36°N, extending from
- 279 112°E 120°E near the coast. In the autumn season (Sept-Oct), less fire activity occurs than in the summer fire season
- and it is more evenly distributed across the entire study area, though there is still a focus of fire activity between 32 -
- 34° N and 112 119° E. Moreover, in the southwest of the study area (29 32° N and 112 114° E) we see a region
- that only appears to undergo substantial burning in the autumn. This is located in the centre of Hubei Province, which
- 283 contributes around 12% of the total rice yield of the whole of China (NBSC, 2015). This area contributes to between
- 284 10 and 18 % (year dependant) of the total autumn burning season FRE.

in Fig. 8 and Table 2.

285 286 4.2 DMB Comparisons to GFAS and GFED 287 The outputs generated by our combined VIIRS and Himawari processing chain were compared to those of GFAS and 288 GFED4.1s (Fig. 7). Dry matter burned (DMB) was used as the common comparison metric, as this removes differences 289 arising from the use of different emissions factors within the inventories. Overall, the VIIRS-IM/Him DMB estimates are around 2× to 5× higher than those reported for corresponding months by GFAS and GFED 4.1s. As detailed in 290 Zhang et al. (2017) and discussed in Section 2, VIIRS has the ability to detect far smaller (and lower FRP) fires than 291 292 MODIS, due to its far smaller pixel size and the fact that the I-band observations also retain their pixel area more 293 effectively across the swath. Ultimately, this difference results in far higher DMB being obtained by the VIIRS-294 IM/Him inventory compared to the MODIS based GFAS and GFED inventories. During the summer months of May-June, all three inventories (GFAS, GFED and VIIRS-IM/Himawari) show a clear 295 296 peak in DMB, but GFAS and VIIRS-IM/Him show a much sharper peak in June, while GFED's summer burning 297 season extends one month earlier (May) and later (July). This extended summer fire season reported by GFED is likely the result false fire reporting, discussed at length in Zhang et al (2018). VIIRS-IM/Him shows a June DMB peak 298 ranging from 3.30 to 11.2 Tg, 2× higher than GFED4.1s (1.89 - 5.34 Tg) and GFAS (2.00 to 4.30 Tg). It should be 299 remembered that the conversion of daily average FRP to DMB in GFAS is derived via a calibration to GFED4.1s 300 301 (Kaiser et al., 2012), so these two emissions databases understandably report similar monthly DMB totals. 302 For the autumn (Sept-Oct) burning season, the peaks in the GFAS and GFED inventories are much less pronounced 303 than the summer burning season peaks (Fig. 7). DMB in October ranges from 0.57 - 1.74 Tg for GFED, significantly 304 higher than the 0.31 - 0.61 Tg reported by GFAS, but far lower than the 1.62 - 3.05 Tg of the VIIRS-IM/Him inventory. 305 The VIIRS-IM/Him derived DMB estimates for eastern China are thus 2 to 3× higher than GFED4.1s and 5× higher 306 than GFAS; these represent larger differences than exist for the earlier summer burning season. This indicates that 307 agricultural fires burning during the autumn fire season may be on average smaller and/or more isolated from other 308 fires than they are in the summer burning season, and thus are even more likely to be missed by the MODIS AF 309 detection product (Giglio et al., 2006) and/or the MODIS BA product (Giglio et al., 2013) than they are during other 310 more intense burning periods. 311 312 4.3 Agricultural Fire Emissions Intercomparison This section presents a comparison of the total annual agricultural fire emissions calculated using the VIIRS-IM/Him 313 314 method with other inventories of Chinese agricultural fire emissions in the literature, and against emissions totals from 315 other sectors to gain a better understanding of the relative importance of agricultural fire emissions. To compare with other reported agricultural fire emission inventories for China, the DMB estimates produced herein were converted to 316 317 fire emissions estimates using the emissions factors and methods described in Section 3.3; these results are summarised

320 of the total emissions released each year (specifically 55-69% of PM_{2.5}, 71-81% of BC, 66-77% of CO₂, and 69-80% 321 of CO). Fig. 8 also indicates a considerable reduction in emissions in 2015 compared to previous years, largely 322 attributable to a reduction in the amount of wheat residue burnt. For example, total PM2.5 emissions from agricultural 323 residue burning in eastern China for 2012-14 cover a relatively narrow range of 107 - 130 Gg (Fig. 8 & Table 2), but 324 decrease to 67 ± 24 Gg in 2015 due to an almost halving of DMB (Fig. 7); similar patterns are observed for BC, CO₂, 325 and CO (Fig.8). 326 From Table 2, it is apparent that emissions totals calculated using the VIIRS-IM/Him approach are consistently higher 327 than those reported by GFAS by factor of 1.2-4.2 (species/year dependent). Similarly, VIIRS-IM/Him emissions totals 328 for CO2 and PM2.5 are greater than those reported by GFED by a factor of 1.1-1.7. In both cases, this can be explained 329 by the tendency of MODIS to miss activity from small fires compared to VIIRS. VIIRS-IM/Him emissions for CO and BC in 2015 are lower than those reported for GFED, which can be attributed to differences in the emissions factors 330 used between the approaches. 331 332 Emissions totals calculated using the VIIRS-IM/Him approach are smaller than those estimated by CYBA studies for 333 the East China/North China Plain regions (Zhang et al., 2008; Huang et al., 2012; Qiu et al., 2016) by a factor of 2-5. 334 It is possible that the much higher totals estimated from the CYBA based studies maybe due to the use of very high 335 residue burning ratios (B_i in Eq. 1) for corn and rice in particular. This finding is discussed further in Section 5. 336 Liu et al., (2015) estimated total emissions in the North China Plain region (a similar area to the study area used in 337 this paper) using MODIS FRP-based calculations, and assumed a modified Gaussian function for the diurnal cycle to generate the daily FRE estimates from which emissions were then derived. These estimates are much closer in 338 magnitude to the equivalent estimates calculated using the VIIRS-IM/Him method than those from the CYBA studies, 339 however 2013 & 2014 estimates by Liu et al. are consistently lower (by a factor of 0.3-0.9); again, we attribute this 340 341 difference to the fact that MODIS based methods capture less fire activity than our VIIRS-IM/Him approach. 342 Interestingly, Liu et al. (2015) estimated far higher emission totals for 2012 compared to 2013 & 2014 and report 343 greater total CO and BC emissions than we do. For example, annual CO₂ emissions in 2012 (26,000 Gg) are > 2× their reported total emissions for 2013 (9800 Gg) and 2014 (13,000 Gg). However, Liu et al.'s processing approach did not 344 345 provide any adjustment for the impact of the MODIS 'bow-tie' scan geometry effect, which leads to duplicated AF 346 detections and this FRP towards the edge of the MODIS swath, and which was highlighted as significant issue for FRP quantification by Freeborn et al. (2008) and Zhang et al. (2017). This is a particular problem in MODIS data 347 from the year 2012, where large amount of duplicated observations have been found towards edge of swath (Fig. S2). 348 This problem has been addressed in GFAS using a scan-angle dependent weighing factor for the MODIS FRP data 349 (Kaiser et al., 2012), as described in Section 2.5, and GFAS' CO₂ emissions from 2012 are only 24% and 10% higher 350 351 than from 2013 and 2014 respectively, a much more modest increase compared to that reported in Liu et al. (2015). 352 Fig. 9 presents a comparison of agricultural emissions calculated using the VIIRS-IM/Him method with emissions 353 from non-biomass burning sources produced by Li et al. (2014) for a sub-area of eastern China (32-36° N, 112-122°

From Fig. 8, it is clear that wheat residue burning is the primary agricultural emission source, accounting for over 50%

E) for the year 2013. We note that crop burning emissions are of relatively little significance when considered on an annual basis; for all four species (CO₂, CO, PM_{2.5}, BC), contributions from agricultural residue burning range between 0.56% and 2.0% of total annual emissions, with the majority of emissions resulting from industry and residential sources. However, in June when agricultural burning and emissions are at a maximum, residue burning contributes 8.1%, 18%, 22% and 20% of total monthly emissions for CO₂, CO, PM_{2.5} and BC respectively, highlighting the strong seasonal impact agricultural burning can have on the emission of species that affect both climate and air quality.

5. ANALYSIS AND DISCUSSION

5.1 Importance of Wheat Residue Burning

Findings in Section 4 (Fig. 5 & 8) indicate that a larger proportion of wheat residue than corn or rice residue is burnt, for several reasons. First, the yields of these three crop types in Eastern China are relatively similar - in 2015 for example, wheat yield was 10% lower than rice yield, and only 20% higher than corn (Table S1; NBSC, 2015). Second, the dry matter production-to-residue ratio (R_i in Eqn. 1) of wheat is not higher than that of rice or corn (Table S2; Wang and Zhang, 2008). Third, with the exception of black carbon, the emission factors for wheat residues are broadly similar to or smaller than the corresponding rice and corn emission factors. It is unknown why a greater fraction of wheat residue than corn and rice residue is burnt, however, it is possible that local management practices and/or stakeholder priorities differ depending upon the residue type and time of year at which crops are harvested, ultimately impacting the fate of these residues e.g. residues from certain crops maybe valuable as fertiliser (Huang et al., 2012), animal feed or for domestic/local energy production (Chen et al., 2017; Liu et al., 2008).

5.2 Discovery of A Winter Burning Season

As detailed in Section 4.1, small peaks in our dry matter burned (DMB) time-series are apparent in November-December of each year (grey shaded area shown in Fig. 5). Since no mention of such a winter burning season was found in the literature (e.g. Chen *et al.*, 2017; Huang *et al.*, 2012; Zhang *et al.*, 2008), these winter peaks were initially considered to be erroneous and likely caused by VIIRS AF false alarms that had failed to be excluded by the landcover and/or persistent thermal anomaly masking detailed in Zhang et al., (2017). Furthermore, according to the crop rotation map derived from the MIRCA2000 data (Fig. S1), there is no obvious harvesting of wheat, corn, or rice during the winter in eastern China. However, close examination of the original VIIRS data and the VIIRS-IM FRP product generated from it by Zhang et al., (2017) shows that most of the AF pixels detected in eastern China in winter are in fact located in or very close to areas classified as agricultural land (Fig. S3), and are not located close to industrial areas of the type known to cause false AF detections (Zhang et al., 2017), nor do the AF detections appear multiple times in the same month at the same location, as would be expected if they were false alarms generated by non-fire features. It therefore seems highly probable that these AF detections are actually a consequence of true agricultural burning (Fig. S3-5).

The most reasonable explanation for the winter AFs appears to be that some of the crop residues from the Sept-Oct (Autumn) harvest season were left idle for a few months and burned in the winter, rather than immediately. Local newspapers, online media and other information sources were consulted, and were found to support the existence of winter residue burning episodes. One example is a report by Jiangsu Province TV station in 5 December 2013, where a huge crop residue burning episode was reported in Hongze (Jiangsu Province), close to the location shown in Fig. S3. Stills from this TV report show flames, thick smoke and extremely poor visibility resulting from the crop residue burning, described in Chinese language subtitles (Fig. S4). Reports of similar episodes were found in different websites/newspapers from across much of eastern China (e.g. Wang and Zhang, 2016; Za, 2015; Zuo, 2015). Subsequent to this confirmation, an explanation as to why this activity may have occurred outside of the normal burning season was sought. According to Yun Xia, a local governor of the Environmental Department in Hefei (interview conducted by Anhui News; Zuo, 2015), the prohibition on agricultural burning started at beginning of September in that area, and continued up until the 20th November. During this period, the local government strongly enforced its polices aiming to restrict agricultural residue burning, and established almost continuous patrols to identify areas likely to host crop residue fires in order to prevent their ignition. However, without a widespread and cost-effective alternative way to dispose of their crop residues, local farmers may simply have stored the residue material and burned it soon after the end of the prohibition period, when the intensive patrol period had ceased. The end of the prohibition period coincides almost exactly with the time of the new winter burning season identified by our VIIRS-IM/Him dataset (Figs. 5-7).

The winter season is important for biomass burning in this area of China, accounting for between 19 and 36 % (year dependant) of the combined autumn and winter FRE total. Based on the crop rotation map (Fig S1), this fire activity was assigned to the burning of both corn and rice residues, with the contribution of each residue to total FRE (and thus DMB) almost equal (49 % and 51 %, average over all years). This split by residue type is very similar to that observed in the Autumn burning season (corn = 54 %, rice = 46 %, average over all years), despite the observed variation in the spatial distribution of fire between autumn and winter (Fig. 6). In general, winter burning appears to take place closer to provincial capitals than autumn burning does; the reason for this spatial shift in fire is discussed in Section 5.4.

5.3 Disagreement Between Satellite Derived Emissions and Crop Yield Based Approaches

In Section 4.3, it was noted that annual emissions totals calculated using crop yield based approaches (CYBAs) are greater than those calculated using the VIIRS-IM/Him method by a factor of 2-3, depending on species. We believe that this discrepancy relates to the 'burning ratio' (BR) used in CYBA to produce emissions estimates. The burning ratio is the ratio of crop residue burned in the field compared to the total amount of residue produced by harvesting, and is a key parameter in bottom up CYBAs (see Eqn. 1, and Chen *et al.*, 2017; Gao *et al.*, 2002; Huang *et al.*, 2012; Li *et al.*, 2016). Streets *et al.* (2003) used a uniform BR of 17 % derived from 1970's data, however more recent studies often make use of regionally varying fractions. We identified three sources of regionally varying burning ratios that are widely used in the CYBA literature:

433

434

435

- 424 i) Wang and Zhang (2008), divided all provinces in China into six zones according to their geographical 425 distribution. A questionnaire-based survey conducted amongst farmers within these regions was used to 426 elucidate the level of burning activity, and using the responses it was determined that burning ratios for 427 the different categories ranged from 11% to 33%. Outputs were applied and referenced in a series of fire 428 emission studies (He *et al.*, 2011, Qin and Xie 2011, Zhang *et al.*, 2016).
- 429 ii) Gao *et al.* (2002) derived a set of province-dependent burning ratios adopted from a large-scale 430 investigation of crop residue use across different Chinese provinces. These ratios have been used and 431 referenced in Huang *et al.* (2012), Yan *et al.* (2006), Zhang *et al.* (2008), and are shown in Fig. 10.
 - iii) A derived value based on farmers' income levels, based on the fact that Cao *et al.*, (2006) found a positive linear correlation between the income of farmers and burning ratio (r = 0.81). This relationship has been applied within several fire emission studies (Sun *et al.*, 2016, Zhao *et al.*, 2015) and will be examined in Section 5.4.

Using crop yield information and the DMB data derived from the VIIRS-IM/Him processing performed herein, it is straight forward to reverse the CYBA methodology to calculate the burning ratio for each crop type. This procedure can help confirm whether the outputs derived herein are comparable with those of the existing literature, as well as enabling the advantages offered by the remote sensing time series to be fully exploited. The burning ratios (B_{ij}) for each province i and crop type j are calculated from:

$$441 B_{ij} = \frac{DMB_{ij}}{P_{ij}R_iC} (10)$$

- Where DMB_{ii} is the estimated VIIRS DMB (g/m²) for province i and crop i; P_{ii} is the yield of crop i for province i (kg);
- 443 R_i is the dry matter production-to-residue ratio for crop i (unitless) and C is crop combustion completeness (proportion,
- 444 0-1). The province level crop yield P_{ij} is derived from annually published statistical reports, and are presented in Table
- S1. R_i and C are from Huang et al., (2012); and are presented in Table S2.
- 446 The crop and province dependent burning ratios calculated from the VIIRS-IM/Him data are shown in Fig. 10,
- alongside the burning ratios from Gao et al. (2002). Fig. 10 indicates that there is considerable variation in burning
- 448 ratios between individual provinces, and that VIIRS-IM/Him wheat burning ratios for are clearly much higher than
- 449 rice/corn burning ratios. When averaged over the entire Eastern China study area, yearly mean burning ratios from
- our results for wheat are highest (7.8 12%), followed by corn (1.7 2.3%), then rice (0.9 2.0%). Equivalent mean
- burning ratios calculated using data from Gao et al. (2002) are 9.8 %, 5.9 % and 8.5 %, respectively. While VIIRS-
- 452 IM/Him wheat residue burning ratios are in reasonable agreement with those used in the various CYBA studies, our
- 453 rice and corn burning ratios are much lower; this appears to explain why total annual emissions from the VIIRS-
- 454 IM/Him approach are much lower than the total emissions obtained from the CYBA studies.
- 455 Fig. 10 also indicates that burning ratios are not only influenced by crop type and province, but also vary considerably
- 456 from year to year. For example, in 2012, satellite derived wheat burning ratios for the important agricultural provinces
- 457 of Anhui (30%), Shandong (11%), Jiangsu (24%) and Henan (11%) are not dissimilar to corresponding ratios (20%,

8%, 10%, 7% respectively) from Gao *et al.*, (2002). However, during 2015, values derived in this study are much lower (Anhui = 6 %; Shandong = 4 %; Jiangsu = 4 %; Henan = 6 %). This interannual variation may be linked with changing local farming activity and prohibition policies (Chen *et al.*, 2017, Li *et al.*, 2016, Yang *et al.*, 2008).

We believe that the disagreement between the burning ratios derived here and those used in CYBA derived studies indicate that emissions inventories derived using traditional CYBAs may be overestimating agricultural burning emissions, for two main reasons: (1) there appears to be considerable uncertainty and subjectivity associated with the methods used to estimating burning ratios used in CYBA studies, and (2) many burning ratios used in CYBA studies are taken from relatively old (>5-10 years) sources of data. For example, Street *et al.* (2003) use data from 1970's, while most later researchers use burning ratios from Wang and Zhang (2008) and Gao *et al.* (2002) as listed above in this section.

As shown by this analysis, burning ratios appear to be subject to high spatial and interannual variability due to rapidly changing agricultural policies and decision making that influences the fate of crop residues. As such, in order to ensure reliable emissions estimates, we suggest that future agricultural emission studies and inventories that are based upon CYBAs should endeavour to use burning ratios derived from data (1) with high granularity, and (2) that was collected in the corresponding inventory year.

5.4 Influence of Social Factors on Agricultural Burning

As highlighted in Section 5.2, some studies assume a positive relationship between burning ratio and the mean local income of farmers (Cao *et al.*, 2006; Qin and Xie, 2011). The explanation for this is that higher income areas have better access to electricity and other energy sources, and thus have less need to utilise crop residues for heating and cooking – leading to higher ratios of open burning at these locations. However, this is not what we observe in from analyses carried out for this study. In Fig. 11a, minimal correlation was found between GDP and burning ratio, and there is some suggestion of an inverse relationship between these variables (y=-89x+9542, r²=0.13). When directly comparing GDP with DMB, as Fig. 12 demonstrates, the provinces with the highest average annual DMB per m² (Anhui and Henan; 46 and 27 g.m²-².yr¹ respectively) have lower GDP values (US\$ 5,580 and 5,335 per capita) than provinces with lower annual DMB densities (e.g. Shandong and Jiangsu, with 15 and 21 g.m²-².yr¹ respectively) but high GDP per capita (USD\$ 9,882 and 13,311 respectively). In fact, across the eastern China study area, our annual total DMB metric was found to be somewhat inversely correlated with GDP per capita (r² = 0.33; Fig. 11b).

We theorise that the observed inverse correlation between GDP and DMB results from the fact that alternative residue disposal methods to biomass burning have a relatively high cost, and can only be afforded by wealthier farmers/provinces. For example, the local government of Jiangsu Province (a relatively wealthy province [\$ 13,311 per capita] with only moderate DMB [21 g.m⁻².yr⁻¹]) released a regulation in 2009 stating that by the end of 2012, over 35% of crop residues should been incorporated into the soil after mechanised harvesting. The regulation also indicated that the local government should include a budget for improving the efficiency of agricultural machinery and subsidise farmers who follow this regulation. Furthermore, alternative uses for crop residues are often expensive, and are likely

only a viable option in relatively wealthy areas. For example, research on residue burning for power generation shows the government needs to pay at least 20% of the total cost of the operation to keep the power plants running, partly because of the high costs associated with residue collection and transportation from the fields (Li and Hu, 2009).

In addition to influencing the quantity of material burned and when it is burned, societal factors also appear influence the spatial pattern of burning within provinces, and at more granular levels such as at the 0.1° grid cell level. The work presented in Section 5.1 suggests that the winter burning season (Nov-Dec) is caused by delayed burning of residues left over from the autumn harvest season, because of prohibition policies related to burning being more robustly enforced earlier in the season. Fig. 6 also showed that the spatial distribution of FRE areal density during winter is different from the normal autumn burning season that occurs in Sep-Oct. Generally, the areas of strongest burning are further from the provincial capital cities (marked by the green stars in Fig. 6) during autumn. For example, fires in Anhui Province are mainly distributed in the north during autumn, whilst fire locations change to the south (closer to the capital city of Hefei) during the delayed winter burns. A similar example can also be seen in Hubei Province, where fires shift from west to east from the autumn to winter burning seasons.

To examine this in a more quantitative manner, we calculated the distance from each grid cell shown in Fig. 6 to their provincial capitals. Fig. 13 shows the normalised frequency distribution of the distance from the capital to the top 10% of FRE releasing grid cells in each province, using data from the four burning seasons during the 2012-2015 period. The first and third distance quartiles during the autumn season are 109 km and 214 km respectively, but for the 'lagged' winter burning season, the distribution shifts to far shorter distances (first and third quartiles of 70 km and 153 km respectively). Similarly, the mean distance from provincial capitals also decreased from 165 km in autumn to 124 km in winter. A Kolmogorov–Smirnov (K-S) test was performed to evaluate the difference between the distributions of distance data for the autumn and winter burning seasons, and the resulting high K-S statistic (0.30, p < 0.001) indicates that the distribution of distances during the winter months is substantially different to the autumn distance distribution. Similar results were found when we applied the K-S test to each calendar year of data separately (not shown). One possible explanation for this observed difference is that the geographical shift might also be linked with the policies aimed at prohibiting burning, since areas close to capital cities are likely to have more resources for enforcing the prohibition compared to areas more distant from the major urban populations.

6. SUMMARY AND CONCLUSION

We have developed a new state-of-the-art agricultural burning emissions inventory ('VIIRS-IM/Him') for eastern China by combining fire radiative power (FRP) observations from the VIIRS and Himawari-8 sensors for the 2012-2015 period. While several other studies have also used satellite EO data to develop such inventories, they have all relied on MODIS fire products for their source observations. Such inventories include the global GFED and GFAS inventories, several Chinese regional studies (e.g. Huang et al., 2012, Liu et al., 2015). MODIS fire products are known to show very high omission rates in environments dominated by small agricultural fires (Randerson et al., 2012;

https://doi.org/10.5194/acp-2019-968 Preprint. Discussion started: 31 January 2020 © Author(s) 2020. CC BY 4.0 License.

528 Zhang et al., 2017, 2018), but the 'small fire optimised' VIIRS-IM product of Zhang et al. (2017) used in this study 529 detects far more of the fire activity across eastern China and on average show FRP totals around 4x higher than those 530 of the MODIS AF products. To convert the twice-daily VIIRS-IM FRP product information to daily time-integrated 531 FRE, we have used new diurnal fire cycle data from Himawari-8, a geostationary satellite positioned over east Asia 532 that can best capture the specific diurnal fire variability of the agricultural burning regions. 533 Our final VIIRS/Him agricultural fire emissions inventory reports dry matter burned (DMB) totals around 2-5× higher 534 than is reported by GFAS and GFED 4.1s in eastern China for corresponding time periods. Use of a crop rotation map 535 allowed our VIIRS-IM/Him fire and emissions outputs to be disaggregated by individual crop types, and we found 536 wheat residue burning to be the primary agricultural emission source, accounting for over 50% of the total emissions 537 each year for all investigated smoke constituents (CO₂, CO, PM_{2.5} and black carbon). A strong seasonal variation in 538 fire activity and emissions is seen, with annual peak activity occurring in summer (May-June) as a result of wheat 539 residue burning, and a smaller secondary activity peak occurring in autumn (Sept-Oct) as a result of corn and rice 540 residue burning. Furthermore, we discovered a new winter (Nov-Dec) agricultural residue burning season. As no crop 541 harvesting occurs during winter, we suspect that this fire activity results from farmers burning previously stored 542 residues from the autumn harvest in winter, after autumn residue burning prohibitions have been lifted. This theory is 543 supported by our observation of statistically distinct spatial burning patterns in the autumn and winter seasons; the 544 majority of autumn burning occurs at a greater distance from provincial capitals than the winter burning does. This 545 may reflect stronger enforcement of autumn residue burning prohibition measures in close proximity to major urban 546 population centres than in rural locations. Farmers in areas with stronger prohibition enforcement (typically closer to 547 urban areas) then burn their agricultural residue in winter. 548 Detailed comparison to existing inventories showed that our VIIRS-IM/Him annual emissions totals are 1.2-4.7× greater than those reported by GFAS, and 0.5-1.7x those reported by GFED4.1s, with some inter-species variability 549 550 due to the use of different emissions factors between the inventories. By contrast, the VIIRS-IM/Him inventory shows 551 emissions totals that are on average lower than those from emission inventories derived using crop yield based 552 approaches (CYBA) by a factor of 2-5x. This discrepancy is believed to be primarily due to many CYBAs using 553 outdated and/or inappropriate burning ratios, that consequently leads to CYBAs overestimating the amount of crop 554 residue DMB annually. Back calculated burning ratios from the VIIRS-IM/Him data suggest that burning ratios for 555 rice and corn are much lower than the CYBA literature suggests (approx. 0.9-2.3 % rather than 11-33 %). We also 556 noted considerable inter-provincial and interannual variation in these back calculated burning ratios, for example, 557 wheat burning ratios significantly decrease over our four-year study period. This strongly suggests that high spatial 558 resolution, up-to-date burning ratios should always be used in CYBA for agricultural burning fire emission estimation. 559 Furthermore, several CYBA approaches (e.g. Sun et al., 2016, Zhao et al., 2015) have derived burning ratios from provincial GDP data, assuming a positive relationship between these variables (Cao et al., 2006). However, we found 560 evidence of an opposite (i.e. negative) relationship between provincial GDP and the amount of DMB in agricultural 561 562 fires, hypothesised to be due to the higher cost of disposal of crop residues by non-biomass burning methods. This suggests that great care needs to be taken when deriving burning ratios for use in future agricultural emissions 563

inventories based upon CYBA methods, and that satellite remote sensing approaches based on EO datasets that 564

565 adequately detect the presence of agricultural fires are a far better approach to fire emissions estimation in such

566 environments.

567

568

569

ACKNOWLEDGEMENTS

- 570 This work has been supported by the NERC National Centre for Earth Observation (NE/R000115/1) and specifically
- 571 by NERC Grant NE/M017729/1. The VIIRS SDR and MODIS data were retrieved from CLASS and Reverb, and are
- 572 courtesy of the NASA EOSDIS LP DAAC and USGS EROS Centre, South Dakota. GFAS data was generated using
- 573 Copernicus Atmosphere Monitoring Service Information, operated by ECMWF. All data storage and processing were
- 574 conducted using the UK's JASMIN super-data-cluster system, managed by UK STFC's Centre for Environmental Data
- 575 Analysis (CEDA).

576

577

581

582

583

584

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603 604 605

606 607

REFERENCES

- 578 Andela, N., Kaiser, J.W., Van der Werf, G.R. and Wooster, M.J., 2015. New fire diurnal cycle characterizations to improve fire 579 radiative energy assessments made from MODIS observations. Atmospheric Chemistry and Physics, 15(15), pp.8831-8846. 580
 - Andreae, M. O. & Merlet, P. 2001. Emission of trace gases and aerosols from biomass burning. Global biogeochemical cycles, 15(4), pp 955-966.
 - Bond, T. C., Doherty, S. J., Fahey, D., Forster, P., Berntsen, T., DeAngelo, B., Flanner, M., Ghan, S., Kärcher, B. & Koch, D. 2013. Bounding the role of black carbon in the climate system: A scientific assessment. Journal of Geophysical Research: Atmospheres, 118(11), pp 5380-5552.
- 585 Cao, G., Zhang, X. & Zheng, F. 2006. Inventory of black carbon and organic carbon emissions from China. Atmospheric 586 Environment, 40(34), pp 6516-6527.
- 587 Chan, C. K. & Yao, X. 2008. Air pollution in mega cities in China. Atmospheric Environment, 42(1), pp 1-42.
 - Cheng, Y., Engling, G., He, K. B., Duan, F. K., Ma, Y. L., Du, Z. Y., Liu, J. M., Zheng, M. & Weber, R. J. 2013. Biomass burning contribution to Beijing aerosol. Atmos. Chem. Phys., 13(15), pp 7765-7781.
 - Chen, J., Chen, J., Liao, A., Cao, X., Chen, L., Chen, X., He, C., Han, G., Peng, S., Lu, M., Zhang, W., Tong, X., Mills, J., 2015. Global land cover mapping at 30m resolution: A POK-based operational approach. ISPRS J. Photogramm. Remote Sens., Global Land Cover Mapping and Monitoring 103, 7–27. https://doi.org/10.1016/j.isprsjprs.2014.09.002
 - Chen, J., Li, C., Ristovski, Z., Milic, A., Gu, Y., Islam, M.S., Wang, S., Hao, J., Zhang, H., He, C. and Guo, H., 2017. A review of biomass burning: Emissions and impacts on air quality, health and climate in China. Science of the Total Environment.
 - Du, H., Kong, L., Cheng, T., Chen, J., Du, J., Li, L., Xia, X., Leng, C. & Huang, G. 2011. Insights into summertime haze pollution events over Shanghai based on online water-soluble ionic composition of aerosols. Atmospheric Environment, 45(29), pp 5131-5137.
 - Ellicott, E., Vermote, E., Giglio, L. and Roberts, G., 2009. Estimating biomass consumed from fire using MODIS FRE. Geophysical Research Letters, 36(13).
 - Freeborn, P. H., Wooster, M. J., Hao, W. M., Ryan, C. A., Nordgren, B. L., Baker, S. P. & Ichoku, C. 2008. Relationships between energy release, fuel mass loss, and trace gas and aerosol emissions during laboratory biomass fires. Journal of Geophysical Research: Atmospheres, 113(D1), pp D01301.
 - Fu, J. Y., Jiang, D., Huang, Y. H., 2014a. 1-km grid population dataset of China, Global Change Research Data Publishing & Repository, DOI:10.3974/geodb.2014.01.06.V1
 - Fu, J. Y., Jiang, D., Huang, Y. H., 2014b. 1-km grid GDP dataset of China, Global Change Research Data Publishing & Repository, DOI:10.3974/geodb.2014.01.07.V1Gao, X., Ma, W., Ma, C., Zhang, F., Wang, Y., 2002. Analysis of the current status of utilization of crop straw in China. Journal of Huazhong Agricultural University 21, 242-247 (in Chinese).
- 608 Giglio, L., Csiszar, I. & Justice, C. 2006. Global distribution and seasonality of active fires as observed with the Terra and Aqua 609 Moderate Resolution Imaging Spectroradiometer (MODIS) sensors. J. Geophys. Res, 111(G02016.

613

614

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

652

653

654

655

656

657

660 661

662

663 664

665

666

- 610 Giglio, L., Randerson, J.T. and Werf, G.R., 2013. Analysis of daily, monthly, and annual burned area using the fourth-generation 611 global fire emissions database (GFED4). Journal of Geophysical Research: Biogeosciences, 118(1), pp.317-328.
 - Goldberg, M.D., Kilcoyne, H., Cikanek, H., Mehta, A., 2013. Joint Polar Satellite System: The United States next generation civilian polar-orbiting environmental satellite system. J. Geophys. Res. Atmospheres 118, 13,463-13,475. https://doi.org/10.1002/2013JD020389
- 615 He, M., Zheng, J., Yin, S. & Zhang, Y. 2011. Trends, temporal and spatial characteristics, and uncertainties in biomass burning 616 emissions in the Pearl River Delta, China. Atmospheric Environment, 45(24), pp 4051-4059.
 - Huang, X., Li, M., Li, J. & Song, Y. 2012. A high-resolution emission inventory of crop burning in fields in China based on MODIS Thermal Anomalies/Fire products. Atmospheric Environment, 50(0), pp 9-15.
 - Jiang, D., Zhuang, D., Fu, J., Huang, Y. & Wen, K. 2012. Bioenergy potential from crop residues in China: Availability and distribution. Renewable and Sustainable Energy Reviews, 16(3), pp 1377-1382.
 - Kaiser, J. W., Heil, A., Andreae, M. O., Benedetti, A., Chubarova, N., Jones, L., Morcrette, J. J., Razinger, M., Schultz, M. G., Suttie, M. & van der Werf, G. R. 2012. Biomass burning emissions estimated with a global fire assimilation system based on observed fire radiative power. Biogeosciences, 9(1), pp 527-554.
 - Li, W., Shao, L. & Buseck, P. 2010. Haze types in Beijing and the influence of agricultural biomass burning. Atmospheric Chemistry and Physics, 10(17), pp 8119-8130.
 - Li, J.F. and Hu, Y.S., 2009. Analysis on investment and operation of straw-fired power plants in Jiangsu province. Electric power technologic economics, 5, p.005 (in Chinese).
 - Li, J., Li, Y., Bo, Y. and Xie, S., 2016. High-resolution historical emission inventories of crop residue burning in fields in China for the period 1990-2013. Atmospheric Environment, 138, pp.152-161.
 - Li, M., Q. Zhang, D. Streets, K. B. He, Y. F. Cheng, L. K. Emmons, H. Huo, S. C. Kang, Z. Lu, M. Shao, H. Su, X. Yu, and Y. Zhang (2014), Mapping Asian anthropogenic emissions of non-methane volatile organic compounds to multiple chemical mechanisms, Atmos. Chem. Phys., 14, 5617-5638.
 - Liu, M., Song, Y., Yao, H., Kang, Y., Li, M., Huang, X. and Hu, M., 2015. Estimating emissions from agricultural fires in the North China Plain based on MODIS fire radiative power. Atmospheric environment, 112, pp.326-334
 - Liu, H., Jiang, G. M., Zhuang, H. Y. & Wang, K. J. 2008. Distribution, utilization structure and potential of biomass resources in rural China: With special references of crop residues. Renewable and Sustainable Energy Reviews, 12(5), pp 1402-1418.
 - NBSC (National Bureau of Statistic of China) China Statistical Yearbook, 480 2003–2015, China Statistics Press, Beijing (2004– 2016) (in Chinese).
 - Portmann, F. T., Siebert, S. & Döll, P. 2010. MIRCA2000—Global monthly irrigated and rainfed crop areas around the year 2000: A new high-resolution data set for agricultural and hydrological modeling. Global Biogeochemical Cycles, 24(1).
 - Qin, Y. & Xie, S. D. 2011. Historical estimation of carbonaceous aerosol emissions from biomass open burning in China for the period 1990-2005. Environmental Pollution, 159(12), pp 3316-3323.
 - Randerson, J., Chen, Y., Werf, G., Rogers, B. & Morton, D. 2012. Global burned area and biomass burning emissions from small fires. Journal of Geophysical Research: Biogeosciences (2005-2012), 117(G4), pp.
 - Roberts, G., Wooster, M.J. and Lagoudakis, E., 2009. Annual and diurnal african biomass burning temporal dynamics. Biogeosciences, 6(5), pp.849-866.
 - Roberts, G., Wooster, M.J., Xu, W., Freeborn, P.H., Morcrette, J.J., Jones, L., Benedetti, A. and Kaiser, J., 2015. LSA SAF Meteosat FRP Products: Part 2--Evaluation and demonstration of use in the Copernicus Atmosphere Monitoring Service (CAMS). Atmospheric Chemistry & Physics Discussions, 15(12).
- 650 Schroeder, W., Oliva, P., Giglio, L. and Csiszar, I.A., 2014. The New VIIRS 375 m active fire detection data product: Algorithm 651 description and initial assessment. Remote Sensing of Environment, 143, pp.85-96.
 - Streets, D.G., Yarber, K.F., Woo, J.H. and Carmichael, G.R., 2003. Biomass burning in Asia: Annual and seasonal estimates and atmospheric emissions. Global Biogeochemical Cycles, 17(4).
 - Sun, J., Peng, H., Chen, J., Wang, X., Wei, M., Li, W., Yang, L., Zhang, Q., Wang, W. & Mellouki, A. 2016. An estimation of CO2 emission via agricultural crop residue open field burning in China from 1996 to 2013. Journal of Cleaner Production, 112, Part 4(2625-2631.
- van der Werf, G. R., Randerson, J. T., Giglio, L., Collatz, G. J., Mu, M., Kasibhatla, P. S., Morton, D. C., DeFries, R. S., Jin, Y. & 658 van Leeuwen, T. T. 2010. Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat 659 fires (1997-2009). Atmos. Chem. Phys., 10(23), pp 11707-11735.
 - van der Werf, G. R., Randerson, J. T., Giglio, L., van Leeuwen, T. T., Chen, Y., Rogers, B. M., Mu, M., van Marle, M. J. E., Morton, D. C., Collatz, G. J., Yokelson, R. J., and Kasibhatla, P. S.: Global fire emissions estimates during 1997-2016, Earth Syst. Sci. Data, 9, 697-720, https://doi.org/10.5194/essd-9-697-2017, 2017.
 - Wang & Zhang, 2016, http://news.chengdu.cn/2016/1106/1829718.shtml, Chengdu Business Daily
 - Wang, S. & Zhang, C. 2008. Spatial and temporal distribution of air pollutant emissions from open burning of crop residues in China. Sciencepaper online, 3(5), pp 329-333.
 - Wolfe, R.E., Lin, G., Nishihama, M., Tewari, K.P., Tilton, J.C. and Isaacman, A.R., 2013. Suomi NPP VIIRS prelaunch and onorbit geometric calibration and characterization. Journal of Geophysical Research: Atmospheres, 118(20), pp.11-508.
- 668 Wooster, M. J., Roberts, G., Perry, G. L. W. & Kaufman, Y. J. 2005. Retrieval of biomass combustion rates and totals from fire 669 radiative power observations: FRP derivation and calibration relationships between biomass consumption and fire radiative 670 energy release. Journal of Geophysical Research: Atmospheres, 110(D24), pp D24311.

- Xu, W., Wooster, M.J., Kaneko, T., He, J., Zhang, T. and Fisher, D., 2017. Major advances in geostationary fire radiative power
 (FRP) retrieval over Asia and Australia stemming from use of Himarawi-8 AHI. Remote Sensing of Environment, 193,
 pp.138-149.
 - Yamaji, K., Li, J., Uno, I., Kanaya, Y., Irie, H., Takigawa, M., Komazaki, Y., Pochanart, P., Liu, Y., Tanimoto, H., Ohara, T., Yan, X., Wang, Z. & Akimoto, H. 2010. Impact of open crop residual burning on air quality over Central Eastern China during the Mount Tai Experiment 2006 (MTX2006). Atmos. Chem. Phys., 10(15), pp 7353-7368.
 - Yan, X., Ohara, T. & Akimoto, H. 2006. Bottom-up estimate of biomass burning in mainland China. Atmospheric Environment, 40(27), pp 5262-5273.
 - Yang, S., He, H., Lu, S., Chen, D. & Zhu, J. 2008. Quantification of crop residue burning in the field and its influence on ambient air quality in Suqian, China. Atmospheric Environment, 42(9), pp 1961-1969.
 - Za, 2015, http://www.chinanews.com/sh/2015/11-04/7606112.shtml, Legislative Evening Newspaper
 - Zhang, H., Ye, X., Cheng, T., Chen, J., Yang, X., Wang, L. & Zhang, R. 2008. A laboratory study of agricultural crop residue combustion in China: Emission factors and emission inventory. Atmospheric Environment, 42(36), pp 8432-8441.
 - Zhang, L., Liu, Y. and Hao, L., 2016. Contributions of open crop straw burning emissions to PM2. 5 concentrations in China. Environmental Research Letters, 11(1), p.014014.
 - Zhang, T., Wooster, M.J., Green, D.C. and Main, B., 2015. New field-based agricultural biomass burning trace gas, PM2. 5, and black carbon emission ratios and factors measured in situ at crop residue fires in Eastern China. Atmospheric Environment, 121, pp.22-34.
 - Zhang, T., Wooster, M.J. and Xu, W., 2017. Approaches for synergistically exploiting VIIRS I-and M-Band data in regional active fire detection and FRP assessment: A demonstration with respect to agricultural residue burning in Eastern China. Remote sensing of environment, 198, pp.407-424.
 - Zhang, T., Wooster, M., de Jong, M. and Xu, W., 2018. How Well Does the 'Small Fire Boost'Methodology Used within the GFED4. 1s Fire Emissions Database Represent the Timing, Location and Magnitude of Agricultural Burning?. Remote Sensing, 10(6), p.823.
 - Zhao, H., Tong, D. Q., Gao, C. & Wang, G. 2015. Effect of dramatic land use change on gaseous pollutant emissions from biomass burning in North Eastern China. Atmospheric Research, 153(429-436).
 - Zhou, L., Divakarla, M., Liu, X., Layns, A., Goldberg, M., 2019. An Overview of the Science Performances and Calibration/Validation of Joint Polar Satellite System Operational Products. Remote Sens. 11, 698. https://doi.org/10.3390/rs11060698
 - Zuo 2015, http://www.chinanews.com/gn/2015/12-11/7666514.shtml, Anhui News

Table 1: Emission Factors for agricultural residue burning used in this study. Wheat and rice emission factors were derived from field measurements conducted in eastern China and reported by Zhang et al. (2015), while the corn emission factors are from Andreae and Merlet (2001), the same as those used in GFAS (Kaiser *et al.*, 2012). *PM_{2.5} = particulate matter with diameter $< 2.5 \mu m$

	Emissions Factor (g.kg ⁻¹)				
	Wheat	Corn	Rice		
CO_2	1739±19	1308±14	1761±30		
CO	60±12	92±18	47±19		
PM _{2.5} *	6.1±1.3	8.3 ± 1.8	9.6 ± 4.3		
Black Carbon	0.70 ± 0.09	0.42 ± 0.05	0.56 ± 0.04		

Table 2: Total species-specific fire emissions calculated in this study for agricultural burning in eastern China, and comparison to those contained within other fire emissions inventories and calculated in previous studies.

Reference	Region	Year	Method	Emissions (Gg.yr ⁻¹)			
				CO ₂	CO	PM _{2.5}	BC
This study	Eastern China	2012	Satellite	31066 ± 1960	1035±327	124±43	11±1.8
		2013		31107 ± 1748	1025±320	130±44	11±1.7
		2014		27069 ± 1421	904±279	107±36	10±1.5
		2015		16932 ± 1044	562±177	70 ± 24	6±0.95
GFAS	Eastern China	2012	Satellite	9219	649	58	3.0
Kaiser et al., 2012		2013		8173	576	52	2.6
		2014		8760	617	55	2.8
		2015		6818	480	43	2.2
GFED4.1s	Eastern China	2012	Satellite	18629	1199	74	8.8
Van der Werf et al., 2017		2013		24034	1547	95	11
		2014		18241	1173	72	8.6

712 713

714

715 716

717 718

		2015		15892	1023	63	7.5	
Liu et al., 2015	NCP^1	2012	Satellite	26000	1700	102	13	
		2013		9800	630	39	5	
		2014		13000	820	50	6	
Zhang et al., 2008	Eastern China ³	2004	$CYBA^2$	67703	5624	-	-	
Huang et al., 2012	Eastern China ³	2006	CYBA	41374	2668	164	20	
Qiu et al., 2016	Eastern China	2013	CYBA	72071	2549	445	42	
Li et al., 2016	NCP	2012	CYBA	68675	5983	452	23	
Sun et al., 2016	China	2013	CYBA	192540	-	-	-	
Street et al., 2003	China	2000	CYBA	160000	10000	-	70	
Yan et al., 2006	China	2000	CYBA	184000	11000	470	80	

¹ NCP refers to the North China Plain, which has a geographic extent similar to that of this study (32-41°N, 113-121°E).

³ Sum of provinces/cities shown in Fig.1 of this study.

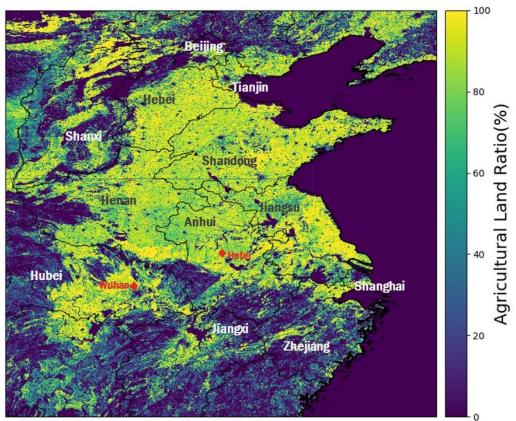


Figure 1: The spatial extent of the study area (111-123° E, 27-40° N). The agricultural land ratio taken from the GlobeLand30 land cover product (Chen et al, 2015) was re-gridded to 0.01 degree spatial resolution, and is overlain with the main provinces, mega-cities and some important provincial capital cities in eastern China. The basic layer of country/province borders within this map was created using Python Basemap librabry.

 $^{^2}$ CYBA refers to Crop Yield Based Approaches, see Section 2.6.1

722

723

724 725

726

727 728

729

12, Jun 2012

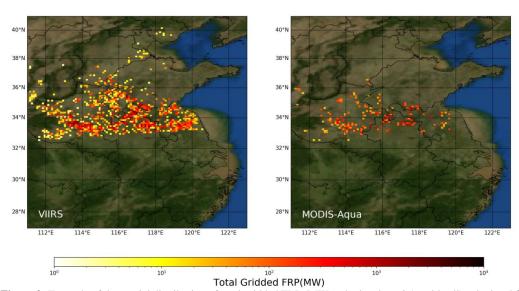


Figure 2: Example of the spatial distribution of total gridded FRP (MW; calculated per 0.1° grid cell) calculated from near simultaneous VIIRS-IM and MODIS Aqua data collected over the eastern China study area of Fig. 1 on June 12^{th} , 2012. The VIIRS-IM data product clearly quantifies a higher proportion of the FRP from fires burning in the region at the time of the satellite overpass than MODIS Aqua does. The basic layer of country/province borders within this map was created using Python Basemap librabry.

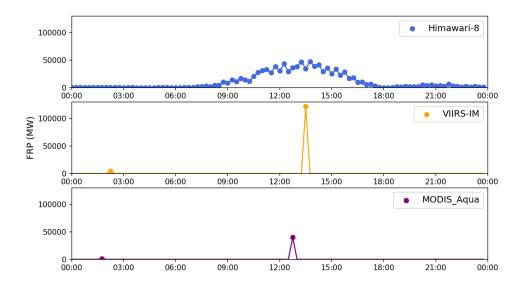


Figure 3: Time series of spatially summed FRP for eastern China, as retrieved from geostationary Himawari, and polar-orbiting VIIRS-IM and MODIS observations made on June 11th, 2015. VIIRS and MODIS Aqua provide

typically two observations per day, and sometimes three when the swath overlaps from different orbits occur. Himawari provides 144 observations per day.

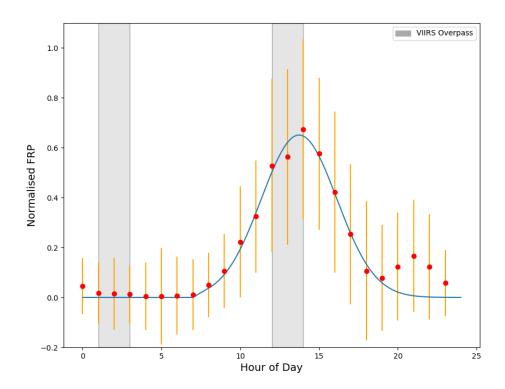


Figure 4: Time series of hourly normalised fire radiative power derived from Himawari-8 FRP data generated using the algorithm of Xu et al. (2017) over eastern China at 0.1 degree for June 2015 (the 'Summer' diurnal fire cycle). The blue curve shows the best fit of the Gaussian distribution, with orange error bar show standard deviation. Grey shading shows the two daily VIIRS overpass periods.

741

742

743

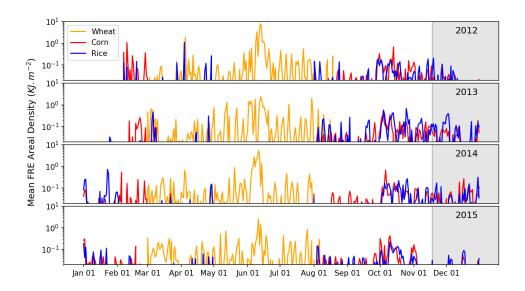


Figure 5: Time-series of mean daily FRE areal density (kJ m⁻², calculated per 0.1° grid cell) from 2012-2015 for the entire study area disaggregated by crop residue type (wheat, corn and rice) according to the method described in Section 2.4. Grey shaded areas highlighted the usual newly discovered winter burning season from mid-November to December when no crop harvesting occurs but where fires are clearly occurring. This period of agricultural burning is discussed further in Section 5.1

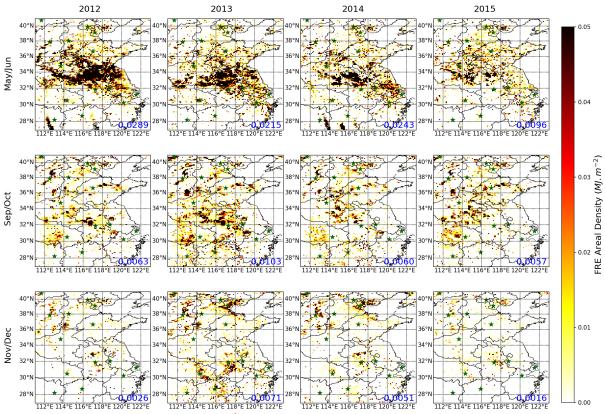


Figure 6: Spatial distribution of FRE areal density (MJ.m⁻², 0.1 deg grid cells) for agricultural fires in eastern China from 2012 to 2015 (top to bottom rows) split by fire season: summer (May-June, top row), autumn (Sep-Oct, middle row) and winter (Nov-Dec, bottom row). Mean regional FRE for each season is indicated in blue text, and the capital city location of each province is shown as a green star on each map. The basic layer of country/province borders within this map was created using Python Basemap librabry.

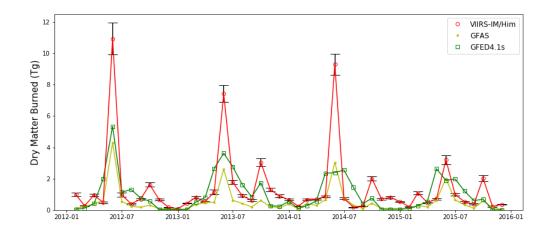


Figure 7: Monthly (2012-2015) time-series of total dry matter burned (DMB) retrieved using the VIIRS-IM/Him FRP product developed in this study (with standard deviation shown as black error bars), along with comparable GFAS and GFED4.1s DMB totals.

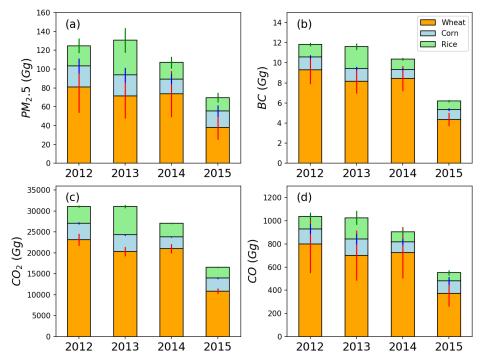


Figure 8: Annual total PM_{2.5}, BC, CO₂, and CO emissions for eastern China for the three main crop residues burning types (wheat, corn, rice) calculated for 2012-2015 using the VIIRS-IM/Him based emissions inventory developed herein. Coloured error bars indicate 1 standard deviation.

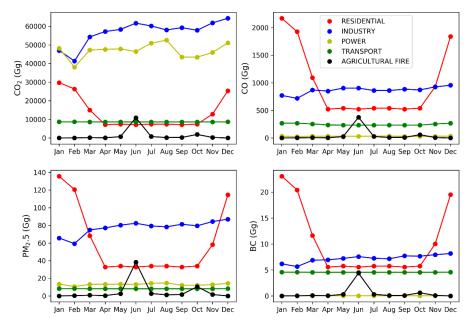


Figure 9: Comparison of monthly CO₂, CO, PM_{2.5} and BC emissions from agricultural fires with those from other emission sources (residential, industry, power, transport, data source: Li et al., 2015) in the intensive burning area (32-36° N, 112-122° E) of eastern China in the year 2013.

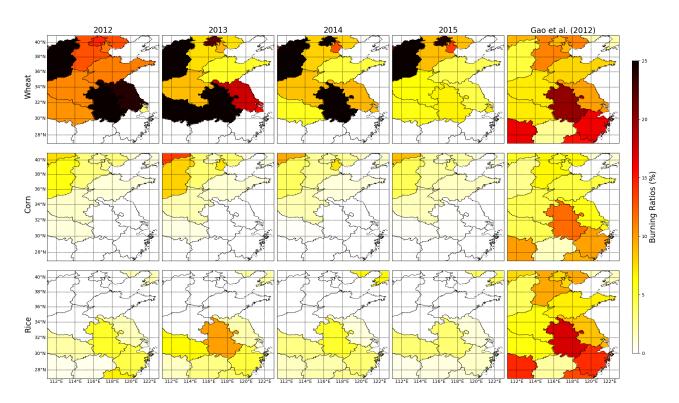


Figure 10: Temporal and spatial variability of province-specific percentages of crop residues burned in the fields (burning ratio metrics) of eastern China. Data are calculated using crop yield estimates from National Bureau of Statistics of China and the dry matter burned totals derived herein using our VIIRS-IM/Him DMB datasets from 2012-2015, and compared to the temporally invariant estimates provided by Gao et al., (2002, final column). The basic layer of country/province borders within this map was created using Python Basemap librabry.

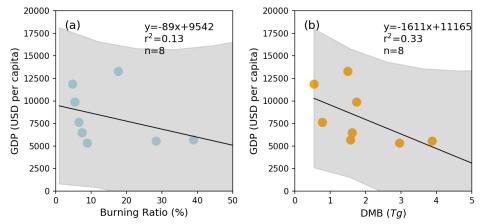


Figure 11: Direct comparisons of mean GDP per capita with (a) burning ratio for wheat from 2012, (b) province-specific yearly dry matter burned (DMB). The best fit linear relationships are shown, along with its equation, and the grey shaded area represents the 95% confidence limit on the relationship.

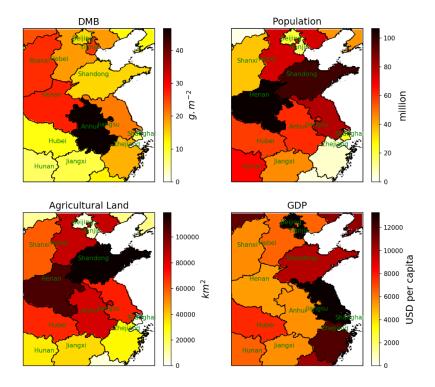


Figure 12: Spatial distribution of province-specific: (a) mean annual dry matter burned as calculated using the VIIRS-IM/Him approach developed herein, (b) population (Data source: Fu *et al.*, 2014a), (c) agricultural land area (Data source: GlobeLand30, http://www.globallandcover.com/) and (d) mean GDP per capita (Data source: Fu *et al.*, 2014b). The basic layer of country/province borders within this map was created using Python Basemap librabry.

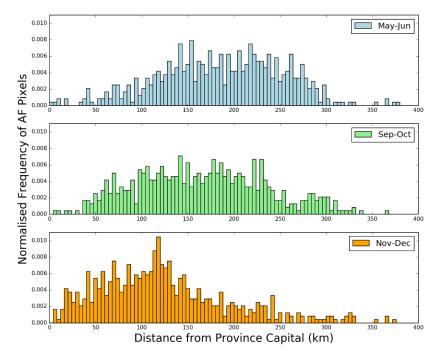


Figure 13: Normalised frequency distribution of distance from province capital of the top 10% of high FRE VIIRS-IM/Him product 0.1 degree grid cells during the three burning seasons: Summer - May to June (top, blue), Autumn – September to October (middle, green), and Winter - November to December (bottom, orange). A clear shift towards the origin can be observed in the Nov-Dec period compared with Sep-Oct.